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Abstract. The consistent analytical theory of multiphoton ionization in a superstrong laser
field is developed. The corresponding initial problem for the Schrödinger equation is reduced
to the initial problem for the pair of integro-differential equations. The appropriate asymptotic
technique is derived and the leading asymptotic term of the solution is obtained. It is shown, that
the atomic stabilization is present under fairly general conditions. The possibility of population
revivals is also shown.

1. Introduction

Such phenomena as photodetachment of negatively charged ions, photoionization of atoms
and photodissociation of molecules can be considered with the aid of the non-stationary
Schr̈odinger equation. Because of this we can discuss these physical problems using a
similar approach and by using general terminology. In the case of an (ultra)strong laser
field perturbation theory cannot be used and we have to devise new methods to find solutions
of the Schr̈odinger equation. Some attempts have been made to derive a theory of atomic
ionization under a strong laser field by using quasiclassical and semiclassical considerations
or by reducing the analysis to numerical experiments [1–8]. Up until now, however, no
consistent analytical theory for describing the ionization of atoms in the superstrong laser
field has been suggested. This paper is an attempt to build such a theory by exploiting the
methods of [9–11]. A short presentation of this approach was published in [12].

Roughly speaking, the dynamics of the above-mentioned physical systems under a laser
field are determined by values of the following parameters: the Rabi parameterR, the
distinctive frequency of external radiationω and some parameterD, which effectively
describes the structure of the static part of the atomic potential. Each parameter here
needs rigorous definition. Omitting the cumbersome details connected with such definitions
(some of them will be discussed later), we can say that the relations between these
parameters determine the regime of ionization and, respectively, the methods of theoretical
investigations of these processes. Ifω � R,D, we have adiabatic ionization and need an
appropriate approach. IfR � ω,D, we get a situation with a weak external laser field
and can use the corresponding version of perturbation theory. IfR,D � ω, we have a
high-frequency situation and the Kramers–Henneberger approach is a suitable framework. If
ω,D � R, the external laser field can be called a superstrong field. Precisely this situation
will be considered later. In this case after scaling we obtain a pair of integro-differential
equations with a large parameter. In order to construct the solution of our physical problem
we need to use an appropriate asymptotic procedure. One aim of this paper is to derive
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such an asymptotic approach. We will discuss this problem on physical standards of rigor
using rather formal methods.

We examine here the most simple physical situation. Namely, we consider the one-
dimensional atom and suppose that only one discrete level of the static part of the atomic
potential is populated initially. Moreover, we assume, that a one-electron model is valid.
The other assumptions (about external field, the structure of atomic potential and so on) are
fairly general. We will discuss later the possible generalizations of our formalism.

The organization of the paper is as follows. In the next section we introduce the main
equations. The basis of our approach is the reduction of the Schrödinger equation to the pair
of integro-differential equations. After scaling, these equations produce a large parameter
proportional to the amplitude of the laser field. In order to calculate the leading asymptotic
term of the solution we derive in section 3 the truncated equation. Sections 4 and 5 are
devoted to solving this equation. Here we obtain our main result (relation (51)) which
describes the solution in explicit analytical terms. In section 6 we will consider the physical
consequences of this result. In section 7 we discuss our findings and pose some open
problems. Some cumbersome mathematical details are displayed in the appendices.

2. Description of the basic formalism

We start from the non-stationary Schrödinger equation

i
∂9

∂t
= {H0+ A(t)x}9. (1)

Here H0 is a static part of the atomic potential (which can contain the contribution of
the static external fields),A(t)x is a contribution of the external laser field (in the dipole
approximation). Let|0〉 be the initially populated level, and|E〉 be the other energy levels of
H0 (both discrete states and states in the continuous spectrum). Let the atom’s wavefunction
9(t) be a linear combination of these states

9(t) = a(t)|0〉 +
∫
b(E, t)|E〉 dE. (2)

In this and in what follows the integral with respect toE also incorporates (when necessary)
a sum over discrete states (we drop the limits of the integration). By a shift in the energy
scale we can put the energy of the zeroth level equal to zero.E is the energy of the state
|E〉. Let A(t) = ρq(t), and

q(t) =
∫ ω2

ω1

µ(ω̂) cos[ω̂t + ϕ(ω̂)] dω̂

in which the optical frequenciesω1 and ω2 are of the same order, andρ and q(t) are
chosen so that max|q(t)| = 1. (To be more definite one can assume, for instance, that
q(t) = cosωt .) The external laser field in our model can be modulated in an arbitrary
manner. This means that it may also contain several modulated optical harmonics with
frequencies of the same order. Note, that examination of multiphoton processes is beyond
the scope of the rotating wave approximation.

We next choose the time scale so thatω = 1, where generallyω = (ω1 + ω2)/2. In
terms of the amplitudesa(t) andb(E, t) equation (1) has the form

da

dt
= iρq(t)

[
G0+

∫
g(E)b(E, t)dE

]
(3)

db

dt
= −iEb(E, t)+ iρq(t)

[
g(E)a(t)+

∫
U(E,E1)b(E1, t)dE1

]
. (4)
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Here G0, g(E) and U(E,E1) are the respective matrix elements of the atom’s dipole
momentum operator. For instance

G0 = 〈0|x|0〉.
Equations (3) and (4) constitute an infinite system of integro-differential equations: the
spectral parameterE assumes an infinite set of values.

We discuss in this paper the one-dimensional situation, when the physical sources of
the external field can be the neighbouring surface or neighbouring atom(s) etc. Evidently,
in these situationsG0 6= 0. But this value is not an important parameter of our formalism
and does not play a serious role in the following. One more source of the static external
field in the one-dimensional case is the static electric field, but if it is present the static part
of the potentialH0 has no discrete level. It must be remembered that existence of at least
one discrete level (one of them is populated initially and was denoted as|0〉) is a necessary
condition of our statement of the problem. If the static electric field is present our statement
of the initial problem itself has apparent obstacles.

We are interested here in the solutions of (3) and (4) that satisfy the initial conditions

a(0) = 1 (5)

b(E, 0) = 0. (6)

More complex initial conditions we will discuss elsewhere.
The parameterρ in the above equations has yet to be specified: we can multiplyρ and

divide g(E) simultaneously by an arbitrary factor. We fixρ by assuming that∫
g2(E) dE = 1. (7)

We call the corresponding value of the dimensionless parameterρ the effective Rabi
parameter of our problem, and in order to obtain the dimensional value of the Rabi parameter
R it must be multiplied byω.

Information about the static part of the atomic potential in our model is contained in the
functionsg(E) andU(E,E1). We will suppose, that these functions satisfy the following
conditions

g(E) ∼ θE−α−1 E→∞ U(E,E1) ∼ ν|E − E1|−α−1

|E − E| → ∞ 0< α < 1/2. (8)

Let us formulate our asymptotic suggestions as two conditions.
Condition 1. We assume, that

ρ � 1. (9)

Condition 2. Functionsg(E) andU(E,E1) are of order unity (more precisely, this
means that parametersθ , ν and all moments of these functions that are not infinite are of
order unity).

These conditions describe our range of physical parameters in the dimensionless form.
Note, that when we study photoionization under a weak external field the ionization

potentialIP (and its relation withω) plays an important role. However, under a superstrong
laser field it is not enough to describeH0 using one parameter only. We need here more
detailed information aboutH0, namely, we have to use the full (infinite) set of moments
of the functionsg(E) andU(E,E1). Because of this we useD, an ‘effective width of the
spectrum ofH0’, as a unique parameter classifyingH0. (We mean this value in the initial
dimensional form; we have scaled our problem by the conditionω = 1.) From this point of
view,D is a more general characteristic ofH0 thanIP . Using this notation, we can rewrite
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condition 1 asR � ω, and condition 2 asD/ω = O(1) (in initial dimensional notation),
keeping in mind, that the last relations are the brief form of conditions 1 and 2 only.

Taking into account the initial condition (6), we put

b(E, t) = iρ
∫ t

0
a(x)q(x)4(E, x, t)dx. (10)

Substituting (10) into (4), we obtain an equation for the transfer function4(E, x, t) and an
initial condition

∂4(E, x, t)

∂t
= −iE4(E, x, t)+ iρq(t)

∫
U(E,E1)4(E1, x, t)dE1 (11)

4(E, t, t) = g(E). (12)

Using (10), equation (3) can be written as

da

dt
= iρq(t)

[
G0+ iρ

∫ t

0
a(x)q(x)8(x, t)dx

]
(13)

in which

8(x, t) =
∫
g(E)4(E, x, t)dE. (14)

We have therefore reduced the problem of multiphoton ionization in a superstrong laser
field to finding the solution of the initial-value conditions (5) and (12) for the pair of
integro-differential equations (11) and (13). These equations contain a large parameterρ

(a dimensionless Rabi parameter) which suggests using an asymptotic procedure to find the
solution. The key component of this procedure is to perform an asymptotic expansion of
the kernel of the integral operator on the right-hand side of (13), integrating by parts.
It is sufficient for us to construct the two leading terms in an approximation of this
integral operator. These terms (which are integral operators) have a simple structure, which
makes it possible to find the necessary asymptotic approximation of the solution of our
initial-value problem. Following the terminology of [9], we say that the function is fast
(slow) if differentiation raises (leaves unchanged) its asymptotic order. This terminology is
convenient in grading the different terms in equations.

The method for constructing an asymptotic expansion of an integral of the product of
a fast function and a slow one is well known [13]. One needs only to integrate by parts,
shifting differentiation from the fast function to the slow one. This operation produces
terms with sequentially lowering order. Properly modified, this method was used in [14]
to construct the full asymptotic solution of the integro-differential equation with a slow
kernel without singularities. More complex situations were discussed in [9] and [10], where
the dynamics of the level-continuum and level-band under a strong modulated laser field
were examined. Namely, in [9] it was considered as an integro-differential equation with
turning point singularity (which corresponds to the presence of the infinite continuum), and
in [10] it was discussed as an integro-differential equation with a singularity-like turning
point (which arises when the external field has a deep modulation). The situation discussed
in this paper presents a new kind of singularity: the kernel of the integral on the right-hand
side of (13) is a fast function. Indeed, as follows from (13), (14) and (11), the functions
a(x) and8(x, t) are fast functions and integration by parts produces terms of the same
asymptotic order as the initial ones. Because of this, the methods used in [9] and [10] and
[14] are inapplicable here and we have to derive a new technique.

The main technical idea of our approach consists in the following (it was derived in
[11] for the more simple model). Integrating by parts (shifting the differentiation from
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a(x) to 8(x, t)) an infinite number of times leads to an infinite series of terms of the same
asymptotic order. If we collect all terms of the leading asymptotic order, we derive the
integro-differential operator with a simple structure. Collecting terms of the next asymptotic
order, which appear as a result of an infinite iteration of the integration by parts procedure,
we obtain a correction for the right-hand side, which is another integral operator with a
kernel that can be calculated explicitly. This procedure makes it possible to determine
the leading terms in the asymptotic expansion of the solution of the initial-value problem
equations (5), (11), (12) and (13). Here is some analogy with the ordinary WKB-expansion
of the solution of an ordinary differential equation with a large parameter. The asymptotic
behaviour of this solution has the following structure

u(t) = exp{iρµ1(t)+ µ2(t)+ µ3(t)/ρ + · · ·}.
The right-hand side of equation (1) contains a large parameter and from the ‘naive’

point of view it looks like an ordinary differential equation with a large parameter. Our
goal is to find the analogues ofµ1(t) andµ2(t), which together determine what we call
the leading term in the asymptotic expansion of the solution, a solution to within a small
correction term. Our first step here is the derivation of the truncated equation. We will
derive it with a formal level of rigor.

3. Derivation of the truncated equation

In integrating by parts on the right-hand side of (13) we will need to calculate quantities of
the form ∂k8(x, t)/∂xk, k = 1, 2, 3 . . . . Let us rewrite equations (11) and (12) in a more
convenient form. Clearly, these equations are equivalent to the following equation

4(E, x, t) = g(E) exp[−iE(t − x)]
+iρ

∫ t

x

q(s) exp[−iE(t − s)] ds
∫
U(E,E1)4(E1, x, s)dE1. (15)

When combined with (14), this equation makes it possible for us to effectively calculate
the derivatives of8(x, t). To illustrate our procedure, we perform a double integration of
equation (13) by parts. For brevity we introduce a new operatorD as follows

Dm(t) = [iρq(t)]−1 dm(t)

dt
. (16)

If we introduce a new variable (‘fast’ variable)

p(t) = iρ
∫ t

0
q(s) ds (17)

then

v(t) = [Dm](p) = dm

dp
.

We can assume here that

[D−1v](x) =
∫ x

0
v(p) dp. (18)

It follows from equation (16) that

iρq(t)v(t) = d(D−1v)

dt
. (19)
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Thus, according to (19), equation (13) can be written as

da

dt
= iρq(t)

[
G0+

∫ t

0

{
d

dx
[D−1a]

}
(x)8(x, t)dx

]
and integrating by parts this gives

da

dt
= iρq(t)

{
G0+ [D−1a](t)8(t, t)−

∫ t

0
[D−1a](x)

∂8(x, t)

∂x
dx

}
. (20)

The second integrated term vanishes due to our choice of the low limit of integration in
(18). Combining (14) and (15) we find

8(t, t) =
∫
g2(E)dE ≡ G1. (21)

As follows from the right-hand side of (20), we have to determine the value of∂8(x, t)/∂x.
Calculating∂4(E, x, t)/∂x by equation (15), we get

∂4(E, x, t)

∂x
= φ1(E, x, t)+ iρq(x)91(E, x, t) (22)

where

φ1(E, x, t) = iEg(E) exp[−iE(t − x)]
91(E, x, t) = −

∫
U(E,E1)g(E1) dE1.

Using equations (22) and (14), we can now calculate the integrand on the right-hand side
of (20). Integrating the term containing91(E, x, t) by parts in the resulting integral, we
arrive at

da

dt
= iρq(t)

{
G0+ [D−1a](t)G1+ [D−2a](t)G2− i

∫ t

0
[D−1a](x)ψ1(x, t)dx

+
∫ t

0
[D−2a](x)

∂9̂1(x, t)

∂x
dx

}
9̂1(x, t) =

∫
g(E)91(E, x, t)dE

ψ1(x, t) =
∫
Eg2(E) exp[−iE(t − x)] dE

G2 =
∫ ∫

dE dE1g(E)U(E,E1)g(E1).

We continue this procedure bearing in mind the following:
(a) integration of a fast function lowers its asymptotic order;
(b) if a(x) is a fast function andq(x) andψ(x) are slow functions, then∫ t

0
dx a(x)

∫ t

x

ds q(s)ψ(s) =
∫ t

0
dx a(x)q(x)

∫ t

x

ds ψ(s)[1+ o(1)].

As a result, collecting the terms of the asymptotic expansions of the integral operator on the
right-hand side of equation (13), which have two leading orders, we arrive at the truncated
equation

da

dt
= iρq(t)

{ ∞∑
k=0

[D−ka](t)Gk − i
∫ t

0
dx

∞∑
k=1

[D−ka](x)ψk(x, t)

}
(23)
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where fork = 1, 2, . . .

Gk =
∫
· · ·
∫ ( k∏

m=1

dEm

)
g(E1)

( k−1∏
n=1

U(En,En+1)

)
g(Ek)

ψk(x, t) =
∫
· · ·
∫ ( k∏

m=1

dEm

)
g(E1) exp[−iE1(t − x)]

( k−1∏
n=1

U(En,En+1)

)
g(Ek)

k∑
p=1

Ep.

Note, that the above two terms are indeed two successive terms in the asymptotic expansion
of the integral term on the right-hand side of (13): the second term, in comparison to the
first, contains one more integration with respect tox, which lowers the asymptotic order.

To find the leading asymptotic term of the solution of the initial-value problem (5),
(11), (12) and (13) it is sufficient to construct a solution of the truncated equation (23) that
satisfies condition (5).

4. Solving the truncated equation: first step

We start with the leading term of the asymptotic expansion (23), i.e. the equation

da

dt
= iρq(t)

∞∑
k=0

[D−ka](t)Gk. (24)

Let us now construct a solution of this equation that satisfies condition (5). We shift
to the variablep according to (26) and integrate this equation once allowing for the initial
value (5). Then, we arrive at a Volterra integral equation of the second kind

a(p)−
∞∑
k=0

[D−k−1a](p)Gk = 1 (25)

with D−1 defined in (18). In order to solve this equation we use the Laplace transformation
and findâ(r), the Laplace transform of the functiona(p) (see [15])

â(r) = [r(1−K(r))]−1 K(r) =
∞∑
k=0

Gkr
−1−k. (26)

We can rewrite this function in a more explicit form. Letλn andµn(E) be the eigenvalues
and normalized eigenfunctions of the operatorU, which one can call the submatrix of the
atom’s dipole momentum operator

(Uµ)(E) =
∫
U(E,E1)µ(E1) dE1.

Let us suppose at first, for brevity, thatU has a purely discrete spectrum; its spectrum,
containing a continuous part, will be described in full details later. The functionU(E,E1)

is symmetric, so thatλn = Reλn, and the eigenfunctions form a orthonormal base in the
respective function space. We expand the functiong(E) in these base functions

g(E) =
∑
n

gnµn(E) (27)

then

Gk =
∑
n

g2
nλ

k−1
n k = 1, 2, . . .

and

K(r) = G0r
−1+

∑
n

g2
n[r(r − λn)]−1. (28)
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As a result we obtain the following expression

â(r) =
[
r −G0−

∑
n

g2
n(r − λn)−1

]−1

. (29)

We must obtain this formula for the case of the real atomic potential (i.e. for the real function
U(E,E1)). In order to do this we need information about the spectrum of the operatorU.
It is more convenient to describe this operator in the spatial representation, and to assume
that the atom is one-dimensional.

Let ψ0(x) = |0〉 be the normalized wavefunction of the initially populated level. Let
S be the projection operator on the one-dimensional space associated with this function.
Then, according to our definition

Uψ(x) = (I − S)x(I − S)ψ(x)
wherex is the operator of multiplication by the variablex, andI is the identity operator.
The eigenfunctions ofU satisfy the following equations

xφ(x, µ) = µφ(x, µ)+ κ(µ)ψ0(x) (30)∫
φ(µ, x)ψ∗0 (x) dx = 0. (31)

Equation (30) immediately yields

φ(µ, x) = δ(x − µ)+ κ(µ)ψ0(x)(x − µ)−1 (32)

where−∞ < µ <∞ andψ0(x)(x−µ)−1 we interpret as a distributionP {ψ0(x)(x−µ)−1},
whereP is the Cauchy principal value. Substituting (32) into (31) gives

κ(µ) = −ψ∗0 (µ)
[
P

∫
|ψ0(x)|2(x − µ)−1 dx

]−1

. (33)

Relations (32) and (33) describe the continuous spectrum of the operatorU. The
corresponding eigenfunction must be normalized. This normalization can be made with
the help of the modified Poincare–Bertrand calculation (see appendix A). It is shown there,
that ∫

dx φ(µ, x)φ∗(λ, x) = [1+ π2|κ(µ)ψ0(µ)|2]δ(λ− µ). (34)

Letting

α(µ) = sign

{
P

∫
|ψ0(x)|2(x − µ)−1 dx

}
then

8(µ, x) = φ(µ, x)T (µ)
T (µ) = [1+ iπα(µ)|κ(µ)ψ0(µ)|]−1

are eigenfunctions of the continuous spectrum,−∞ < µ <∞.
Besides the continuous spectrum, operatorU can have discrete eigenvalues. If there are

suchµk, k = 1, 2, . . . , N , so that the following relations are valid simultaneously

ψ0(µk) = 0 (35)

P

∫
|ψ0(x)|2(x − µk)−1 dx = 0 (36)

then functions

φk(x) = ψ0(x)(x − µk)−1 (37)



An atom in a superstrong laser field 3027

are eigenfunctions of the discrete spectrum of the operatorU. If 8k(x), k = 1, 2, . . . , N ,
are normalized in theL2(R) versions of these functions, one more eigenfunction isψ0(x),
which corresponds to the discrete eigenvalueµ = 0. Then

{8(µ, x),−∞ < µ <∞,8k(x), k = 1, 2, . . . , N,ψ0(x)}
is the full set of the eigenfunctions ofU.

Equation (36) can have roots. If, for instance,ψ0(x) is symmetric with respect to the
substitutionx →−x, thenµ = 0 is a solution of (36). Moreover, if the static potentialH0

has Coulomb singularity atx = 0, thenψ0(0) = 0 andµ1 = 0 is the discrete eigenvalue of
U.

So, the eigenfunctions of operatorU are distributions and we have to use the
corresponding version of the spectral theorem (see [16–18]). According to this theorem,
one can represent ‘any’ function as a linear combination of these eigenfunctions (Parceval’s
formula). Our aim is to derive the analogues of relations (27) and (28). We can use the
spatial representation directly. It follows from our definitions that we have to expand the
function (I − S)xψ0(x). Thus, we obtain the coefficients of this expansion on continuous
eigenfunctions and discrete eigenfunctions respectively

c(µ) =
∫
xψ0(x)8

∗(µ, x)dx = κ∗(µ)T ∗(µ)

ck =
∫
xψ0(x)8

∗
k(x) dx = ‖φk(x)‖−1.

We can now write the analogue of (28) in the form

K(r) = r−1

[
G0+ P

∫
dµ|κ(µ)T (µ)|2

r − µ +
N∑
k=1

|ck|2
r − µk

]
. (38)

The analogue of relation (29) is

â(r) =
[
r −G0− P

∫
dµ|κ(µ)T (µ)|2

r − µ −
N∑
k=1

|ck|2
r − µk

]
. (39)

In order to invert the Laplace transform and find the functiona(p), we will use a general
approach [15]. We have to choose as the integration contour on the complex planer some
straight line parallel to the imaginary axis, which is situated to the right of the support of
the integrand. One can find the details of this calculation in appendix B. Here we present
the result only.

Let ζm,m = 1, 2, . . . ,M, be the solutions of the transcendent equation

r = G0+ P
∫

dµ|κ(µ)T (µ)|2
r − µ +

N∑
k=1

|ck|2
r − µk . (40)

We will call these solutions pseudopoles. Let

Bm = lim
r→ζm

{
(r − ζm)

[
r −G0− P

∫
dµ|κ(µ)T (µ)|2

r − µ −
N∑
k=1

|ck|2
r − µk

]−1}
(41)

these values are the corresponding pseudoresidues. Then

a(t) =
M∑
m=1

Bm exp

[
iρζm

∫ t

0
q(s) ds

]
+
∫ ∞
−∞

dr exp

[
irρ

∫ t

0
q(s) ds

]
3(r) (42)
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in which

3(r) = π |κ(r)T (r)|2
{[
r −G0− P

∫
dµ|κ(µ)T (µ)|2

r − µ

−
N∑
k=1

|ck|2
r − µk

]2

+ π2|κ(r)T (r)|2
}−1

.

It follows from the explicit form that

|3(r)| = O(|κ(r)|2r−2) = O(|ψ0(r)|2) at |r| → ∞.
Because of this we can use relation (42) with infinite limits of integration.

Let us now discuss the number of pseudopolesM. They are solutions of equation (40).
In order to estimate this quantity, we have to take into account the following considerations:

(i) the left-hand side of equation (40) is an unbounded function;
(ii) the singularities of the right-hand side of this equation are placed in the discrete

eigenvalues of the operatorU;
(iii) the integral part on the right-hand side of (40) is a bounded continuous function.
If N = 0, then the right-hand side of (40) is bounded, and one can see that at any rate

one solution of this equation exists. LetN > 1 and note that|ck|2 > 0 for any k. We
conclude, that in some vicinity of eachµk at least one solution ofζm exists (see figure 1).
Ultimately we getM > N + 1.

Figure 1.

5. Solving the truncated equation: second step

Thus, we have obtained the solution of equation (24) satisfying the initial condition (5).
Here we will consider the full truncated equation (23). We will seek its solution in the form

a(t) =
M∑
m=1

Bm exp[S(t, ζm)] +
∫ ∞
−∞

dr exp[S(t, r)]3(r) (43)

in which

S(t, r) = irρ
∫ t

0
q(s) ds +

∫ t

0
m(s, r)ds.
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This relation is a natural generalization of (42). The initial condition (5) is fulfilled
automatically. In order to find the functiona(t) we have to determine the functionm(s, r)
and, first of all, to find an equation for it.

We can discuss any exponent in (43) separately assuming that the functionm(s, r) is a
slow function. Substituting (43) into (23) gives

[iρrq(t)+m(t, r)] exp[S(t, r)] = iρq(t)

{∫ t

0
iρq(x)Z

[
iρ
∫ t

x

q(s) ds

]
exp[S(x, r)] dx

+
∫ t

0
C(x, t)exp[S(x, r)] dx

}
(44)

whereZ(p − h) (C(x, t)) is a kernel of the first (second) integral operator on the right-
hand side of (23). In essence the integral operatorZ (with the corresponding kernel) was
discussed in the preceding section. We will use here the following property of this operator

Z exp(rp) = r exp(rp). (45)

Let us discuss in more detail the first term on the right-hand side of (44)

Q = iρq(t)
∫ t

0
iρq(x)Z

[
iρ
∫ t

x

q(s) ds

]
exp

[
iρr

∫ t

0
q(s) ds

]
exp

[ ∫ t

0
m(s, r)ds

]
dx.

We integrate it by parts transferring the differentiation fromZ to exp[
∫ t

0 m(s, r)ds] and
using (45)

Q = iρrq(t) exp[S(t, r)] − iρrq(t)
∫ t

0
m(x, r)exp[S(x, r)] dx.

It is enough for us to calculate the integral in the last relation to leading asymptotic order.
Let us rewriteQ in the following form

iρrq(t)
∫ t

0
dx m(x, r)exp[S(x, r)] = iρr

∫ t

0
dx m(x, r)q(x)exp[S(x, r)]

+iρr
∫ t

0
dx m(x, r)[q(t)− q(x)] exp[S(x, r)].

The second integrand on the right-hand side of the last relation has a root whenx = t .
It follows from this fact that the corresponding integral has the lowest asymptotic order
[13]. The first integral on the right-hand side we integrate by parts and obtain to leading
asymptotic order

iρr
∫ t

0
dx m(x, r)q(x)exp[S(x, r)] = m(t, r)exp[S(t, r)].

Collecting the terms in equation (44), we get an equation form(t, r)

2m(t, r) = iρq(t) exp[−S(t, r)]
∫ t

0
C(x, t)exp[S(x, r)] dx.

As before, we can calculate the integral on the right-hand side to leading asymptotic order,
omitting in S(x, r) the term containing the functionm(x, r) and inC(x, t) the dependence
on the slow variables. Applying these considerations we find

m(t, r) = constant(t) = −iV (r)/2 (46)
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where the functionV (r) is defined as follows: forr with a large positive real part

V (r) =
∞∑
k=1

δkr
−k−1

δ1 =
∫
Eg2(E) dE

δk =
∫
· · ·
∫ ( k∏

s=1

dEs

)
g(E1)

( k−1∏
m=1

U(Em,Em+1)

)
g(Ek)

k∑
l=1

El.

For otherr we use the result of the corresponding analytical continuation. Here we suppose,
that δk = O(1) (it follows from our main asymptotic assumptions).

We can obtain a more explicit form of the functionV (r). Indeed, let us consider the
solution of the integral equation

rf (E, r, z) = g(E)+
∫

dE1U(E,E1) exp[−E1z]f (E1, r, z). (47)

Then for large positive realr

V (r) = 1

r

∂F (r, z)

∂z

∣∣∣∣
z=0

in which

F(r, z) =
∫

dE g(E)exp[−Ez]f (E, r, z).

One can prove this relation by solving equation (47) by iteration. More convenient is the
symmetric version of this integral equation. Substituting

f (E, r, z) = exp[Ez/2]h(E, r, z)

we obtain for the functionh(E, r, z) the integral equation

rh(E, r, z) = g(E) exp[−Ez/2]+
∫

dE1U(E,E1) exp[−(E1+ E)z/2]h(E1, r, z). (48)

Let µ, ϑ(µ,E; z) be eigenvalues and corresponding eigenfunctions of the integral
operator

[U(z)h](E) =
∫

dE1U(E,E1) exp[−(E1+ E)z/2]h(E1, z). (49)

It follows from our definitions thatσ(z), the spectrum ofU(z), tends to the spectrum ofU
whenz→ 0. Using the corresponding spectral expansion, we get from equation (48)

h(E, r, z) =
∫
σ(z)

ϑ(µ,E; z)
r − µ ĝ(µ, z)dµ

where

ĝ(µ, z) =
∫
g(E) exp[−Ez/2]ϑ(µ,E; z) dE.

As a result we obtain

V (r) =
[

1

r

∂

∂z
P

∫
σ(z)

ĝ2(µ, z)dµ

r − µ
]∣∣∣∣
z=0

. (50)
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Actually we can calculate the functionV (r), using the information about operatorsU and
H0 only. Indeed, in order to determine the right-hand side of relation (50) it is enough to
consider insteadU(z) the more simple operator

[Û(z)h](E) =
∫

dE1U(E,E1)[1− (E1+ E)z/2]h(E1, z).

We can find its spectral characteristics using a corresponding version of perturbation theory,
and rewrite (50) in more explicit terms, but here we omit these cumbersome details.

Summing, we find the final relation, which is the main result of this work

a(t) =
M∑
m=1

Bm exp[S(t, ζm)] +
∫ ∞
−∞

dr exp[S(t, r)]3(r) (51)

in which

S(t, r) = irρ
∫ t

0
q(s) ds − itV (r)/2

and the function3(r) has been described previously. It can be shown that the function
V (r) is bounded except for points, which are discrete eigenvalues ofP . However, at these
points function3(r) equals zero.

Relation (51) describes the dynamics of the amplitudea(t) at t = O(1). The amplitudes
b(E, t) and the distribution of the electrons ejected from the atom can be obtained from
(10). Explicit results will be described elsewhere.

6. Physical results: atomic stabilization and revivals

Here we discuss the physical consequences of our findings using the well known asymptotic
results [13] about the integrals from fast-oscillating functions.

First, relation (51) describes the general structure of the solution of our initial value
problem. Namely, ift does not equal the root of the equation∫ t

0
q(s) ds = 0 (52)

then the second term on the right-hand side of (51) is asymptotically small, and (51) reads

a(t) =
M∑
m=1

Bm exp

[
iρζm

∫ t

0
q(s) ds − itV (ζm)/2

]
+ o(1). (53)

It follows from this result that almost everywhere the solution is a finite sum of some simple
functions up to an asymptotically small correction.

Let us now calculate the population of the level|0〉 (which was populated initially).
Using (51) we obtain

n(t) = |a(t)|2 =
M∑

m,n=1

BmB
∗
n exp

[
iρ(ζm − ζn)

∫ t

0
q(s) ds − it [V (ζm)− V (ζn)]/2

]
+ o(1).

Averaging with respect to the fast oscillations gives

n̂(t) =
M∑
m=1

|Bm|2+ o(1). (54)

As was discussed earlier,M > 1. This means, that the sum on the right-hand side of (54)
is positive. Finally, we get

n̂(t) = constant= O(1) > 0 t = O(1). (55)
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As follows from (51) (and was assumed previously, see conditions 1 and 2), the leading
temporal parameter in our problem isρ−1 and it is natural to estimate the duration of the
level population decay as a value of orderρ−1, so it must ben̂(t) = o(1) at t = O(1).
However, relation (55) shows that it is not valid. In accordance with it, this duration is
much more than 1 (the period of the optical oscillations in our dimensionless notation) and
increases when the intensity of the external field increases (see later discussions). Because of
this one can interpret (55) as a trapping of the level population, or as an atomic stabilization.

Let us consider another physical consequence of our results. Letts , s = 1, 2, . . . , be
roots of equation (52). In theρ−1-vicinity of each point the integral part of the right-hand
side of (51) is not asymptotically small. This means that in these vicinities the function
a(t) gives a sharp variation. Specifically, the level population can have sharp peaks (or
gaps) in these vicinities. The widths of these singularities are of the orderρ−1. We can
interpret such peaks as revivals. The possible presence of revivals in the atomic ionization
was discussed in [7]. Note, that as was mentioned previously the atomic characteristics
oscillate with frequencies of orderρ (see (53)). Because of this the possibility of increasing
the level population is a rather subtle phenomenon.

Let us next consider the simplest case whereq(t) = cost . Then,
∫ t

0 q(s) ds = sint and
we gettk = 2πk. This situation looks like a return of the oscillating wavepacket to its initial
position after each cycle. But this point of view is, in our opinion, too simplified. Namely,
the wavepacket oscillates with frequencies likeρ−1 (as follows from (51)). From the point
of view of these oscillations the rootstk are very ‘seldom’ and the wavepacket can ‘forget’
the initial information. However, in these moments of time the sharp increasings (or gaps)
of the level population can be due to some interference phenomenon. Note that values of
the corresponding peaks (Ak) depends on subtle characteristics of the ‘pseudopoles’ and,
generally speaking, can be non-monotonic relations betweenAk and k (such situations
cannot be described in terms of ‘returns’).

Figure 2 reflects the qualitative behaviour of the level population according to our
results.

Figure 2.
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7. Discussion

First, let us consider the possible role of subsequent terms of the asymptotic expansion of
the solution. In the following asymptotic terms we face two singularities.

(i) The first one is connected with the asymptotic behaviour of the matrix elements
of the atom’s dipole momentum operator (8). If 0< α < 1/2, then the next moments
of functionsg(E) andU(E,E1) (such as

∫
E2g2(E) dE) are infinite. Such a singularity

was considered in [9] in the simplest case. Namely, the quantum system level-continuum
under a strong laser field was investigated with a disregard of the continuum–continuum
transitions. It was shown that this singularity leads to the decay of the level population and
the rate of this decay is generally speaking of orderρ−2α.

(ii) The second singularity is connected with zeros of the functional coefficientq(t)

(similar singularity is well known in the theory of ordinary differential equations with a large
parameter). Such a singularity was discussed in the simplest variant (which corresponds
to the physical situation: the quantum system level-band interacts with a deep modulated
strong laser field) in [10]. It was shown there, that the presence of this singularity leads to
the decay of the level population and that the rate of this decay is generally speaking of
orderρ−1. Thus an increase of the amplitude of the external field leads to a decrease of the
decay rate of the level population.

Remark 1. The expression ‘. . . the rate of this decay is generally speaking. . . ’ already
mentioned means the following. There are special initial conditions when the (average)
level population is constant in the calculated asymptotic order (in both cases (i) and (ii)).

Remark 2. Note, that from the physical point of view the statements of problem
of the atomic ionization in [9] and in [3] are very similar. In both papers the high-
frequency situation was discussed, when the conditionω � R � D is valid. Using the
Kramers–Henneberger framework and computational simulations it was shown in [3], that
the ‘average’ atomic potential under a strong laser field gives a pair of discrete states, what
can be interpreted as an atomic stabilization. In [9] the quantum system level-continuum
under a strong modulated laser field was discussed and it was shown, that the solution is
a linear combination of two generalized Rabi harmonics. But in [9], using a completely
analytical approach, we calculate the rate of decay of the level population connected with
the asymptotic behaviour of the matrix elements of the atom’s dipole momentum operator.

In our situation there are three simultaneous singularities: fast-oscillating kernels of
the integral part of the integro-differential equation (13) and the singularities (i) and (ii).
Thus, the derivation of the next term of the asymptotic expansion of the solution is a harder
problem. However, it follows from the qualitative considerations that in the present, more
general case we can presuppose the analogous influence of the singularities (i) and (ii). In
other words, taking into account the next terms in our problem we will obtain the decay
rate of the level population of order max(ρ−1, ρ−2α). From the ‘naive’ point of view the
atom under a superstrong laser field has to be fully ionized for the time period of orderρ−1.
However, it follows from our results, that the duration of ionization is of orderρmin(2α,1).
This duration increases when the amplitude of the laser fields increased. Such phenomena
are called atomic stabilizations. It is worthy to mention that the atomic ionization depends
on many parameters of the atom and of the external field. In different regions of parameters
atomic stabilization has different sources [8]. From the point of view developed here atomic
stabilization (in the case when the laser field is superstrong) is the result of the necessary
presence of the pseudopoles—solutions of equation (40).
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We have solved our initial problem in explicit analytic terms connected withψ0(x) and
the full spectrum of the operatorsU andH0. This description is from some points of view
the ‘internal’ one. How is this description connected with the ‘external’ description from
the point of view of an outside observer? This connection is not simple for real physical
systems. For instance, in order to calculate the effective Rabi parameterρ introduced earlier
we need information about the full spectrum ofH0 (or its effective estimate). Only after this
can we verify the validity of our asymptotic assumptions (9) for the real physical systems.
If we want to derive a computational procedure on the basis of this approach, we again
need full information about the spectral description of the operatorH0. Obtaining this
information can be difficult. That is why up to now our results are considered an analytical
solution of the problem only. However, there are very broad sets of atom-like systems,
which can be, in principle, examined in our terms, such as an atom in external static fields,
negatively charged ions and so on. Some important characteristics of these systems can be
chosen arbitrarily (for instance, an amplitude of the external static field). This means that
for some real physical situations our results can give a sufficient description.

We have discussed here the one-dimensional atom whereas the real atom is a three-
dimensional object. This assumption was used, when we considered the spectrum of the
submatrixU. It as a unique point of our approach that this assumption is essential and
means, that the description of the spectrumU in the three-dimensional case is enough to
expand our approach to the three-dimensional atom. It seems that the last problem can be
solved in this way also.

There are other possible generalizations and applications of our results such as high-
harmonic generation, multiple ionization (outside the one-electron model) and the relativistic
approach (instead of the Schrödinger equation we can use the Dirac equation). Apparently,
some modifications of our approach make it possible to rewrite our results for correspondent
problems. One direction is connected with the choice of initial conditions and (or) the
presence of another discrete level placed close to the level|0〉. As was discovered in [19]
(see also [8]) in rather a different physical situation, field-induced interference stabilization
can occur. So the question arises: is there an analogous phenomenon under a superstrong
laser field? We will consider this in more detail elsewhere.

To summarize, a consistent analytical approach to the problem of the multiphoton
ionization in a superstrong laser field has been suggested. The appropriate asymptotic
procedure has been developed and the leading asymptotic term of the solution constructed.
It has been shown that atomic stabilization exists under rather general assumptions about the
external field and atomic structure. It has been noted that revivals of the level population
can also be shown.
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Appendix A

Our aim here is to derivate relation (34). Let us discuss the distributionC(µ, ν), which
acts on the test smooth functionr(ν) in the following way∫

C(µ, ν)r(ν)dν =
∫

dx φ(µ, x)
∫
φ∗(ν, x)r(ν)dν. (56)
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We will use the Sohotsky relation: for any test functionζ(x)

P

∫
ζ(x) dx

x − µ = iπθζ(µ)+ lim
ε→+0

∫
ζ(x) dx

x − µ+ iεθ
(57)

where θ = ±1. The scheme is considered as follows. We will substitute the explicit
expressions for the functionsφ(µ, x) and φ∗(ν, x) into (56); then, using the Sohotsky
relations, we will expand the ratio in the iterated integral into a sum of the ratios and obtain
(34).

First, we discuss the distribution

S(x) =
∫
φ∗(ν, x)r(ν)dν.

This acts on any test functionu(x) in the following way

〈S, u〉 =
∫

dν r(ν)
∫

dx φ∗(ν, x)u(x) =
∫

dν r(ν)u(ν)

+
∫

dν r(ν)κ∗(ν)
[

iπψ∗0 (ν)u(ν)+ lim
ε→+0

∫
u(x)ψ∗0 (x) dx

x − ν + iε

]
.

In the iterated integral we can change the order of integration (becauseε 6= 0) and find

〈S, u〉 =
∫

dν r(ν)u(ν)+ iπ
∫

dν r(ν)κ∗(ν)ψ∗0 (ν)u(ν)

+ lim
ε→+0

∫
dx ψ∗0 (x)u(x)

∫
dν r(ν)κ∗(ν)
x − ν + iε

.

Using the Sohotsky formula once more (in the ‘inverse’ direction) gives

〈S, u〉 =
∫

dν r(ν)u(ν)+
∫

dx ψ∗0 (x)u(x)P
∫

dν r(ν)κ∗(ν)
x − ν .

We can rewrite this result in the form

S(x) = r(x)+ ψ∗0 (x)P
∫

dν r(ν)κ∗(ν)
x − ν . (58)

Let us now calculate the distributionC(µ, ν) with the help of equation (58). We suppose
for brevity thatµ andν are not roots of equation (36). From the definition ofC(µ, ν) we
get∫
C(µ, ν)r(ν)dν =

∫
dx φ(µ, x)

[
r(x)+ ψ∗0 (x)P

∫
dν r(ν)κ∗(ν)

x − ν
]

= r(µ)+ κ(µ)P
∫

dx ψ0(x)r(x)

x − µ + ψ∗0 (µ)P
∫

dν r(ν)κ∗(ν)
µ− ν + R(µ) (59)

in which

R(µ) = κ(µ)P
∫

dx|ψ0(x)|2
x − µ P

∫
r(ν)κ∗(ν)
x − ν .

We next transform this expression. In order to split the singularities of the integrand we
use the Sohotsky relation withθ = 1 andθ = −1, so

R(µ) = κ(µ)
{
π2r(µ)κ∗(µ)|ψ0(µ)|2− iπ |ψ0(µ)|2 lim

ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + iε

+iπ lim
ε1→+0

∫
dx|ψ0(x)|2r(x)κ∗(x)

x − µ− iε1
+ lim

ε→+0
lim
ε1→+0

∫
dx|ψ0(x)|2
x − µ− iε1

×
∫
r(ν)κ∗(ν) dν

x − ν + iε

}
.
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In the double integral we change the order of integration and use the obvious relation

(x − µ− iε1)
−1(x − ν + iε)−1= [µ−ν+i(ε+ε1)]

−1[(x − µ−iε1)
−1−(x−ν+iε)−1].

Then we get

R(µ) = κ(µ)
{
π2r(µ)κ∗(µ)|ψ0(µ)|2− iπ |ψ0(µ)|2 lim

ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + iε

+iπ lim
ε1→+0

∫
dx|ψ0(x)|2r(x)κ∗(x)

x − µ− iε1
+ I1− I2

}
I1 = lim

ε1→+0
lim
ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + i(ε + ε1)

∫
dx|ψ0(x)|2
x − µ− iε1

I2 = lim
ε1→+0

lim
ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + i(ε + ε1)

∫
dx|ψ0(x)|2
x − ν + iε

.

We choose inI1 (I2) the following order of passage to the limit: at firstε1→+0 (ε→+0)
and after thisε→+0 (ε1→+0). Applying the Sohotsky formula for the internal integrals
(in the inverse direction) we find

R(µ) = κ(µ)
{
π2r(µ)κ∗(µ)|ψ0(µ)|2− iπ |ψ0(µ)|2 lim

ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + iε

+iπ lim
ε1→+0

∫
dx|ψ0(x)|2r(x)κ∗(x)

x − µ− iε1

+ lim
ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + iε

[
iπ |ψ0(µ)|2+ P

∫ |ψ0(x)|2 dx

x − µ
]

− lim
ε1→+0

∫
r(ν)κ∗(ν) dν

µ− ν + iε1
×
[
− iπ |ψ0(ν)|2+ P

∫ |ψ0(x)|2 dx

x − ν
]}
.

Collecting similar terms and using the relation

κ∗(ν)P
∫ |ψ0(x)|2 dx

x − ν = −ψ0(ν) (60)

gives

R(µ) = κ(µ)
{
π2r(µ)κ∗(µ)|ψ0(µ)|2+ P

∫ |ψ0(x)|2 dx

x − µ lim
ε→+0

∫
r(ν)κ∗(ν) dν

µ− ν + iε

+ lim
ε1→+0

∫
dν r(ν)ψ0(ν)

µ− ν + iε1

}
.

Applying once more the Sohotsky relation (in the ‘inverse’ direction) and using again
relation (60) we arrive at the formula

R(µ) = κ(µ)
{
π2r(µ)κ∗(µ)|ψ0(µ)|2+ P

∫
dν r(ν)ψ0(ν)

µ− ν

+P
∫

dx|ψ0(x)|2
x − µ P

∫
dν r(ν)κ∗(ν)
µ− ν

}
.

Substituting this relation into (59), we obtain the result∫
C(µ, ν)r(ν)dν = r(µ)[1+ π2|κ(µ)ψ0(µ)|2].

Finally

C(µ, ν) = [1+ π2|κ(µ)ψ0(µ)|2]δ(µ− ν).
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Appendix B

Let us discuss the integral

G(s) = (2π i)−1
∫
L

dr exp(rs)

[
r −G0−

∫
σ

p(µ) dµ

r − µ −
N∑
k=1

c2
k

r − µk

]−1

. (61)

Hereσ is some interval of the real axis,p(µ) is a real valued smooth functionp(µ) > 0,
ck is a real constant, the contour of integrationL is a straight line parallel to the imaginary
axis and situated more right thanσ (we assume at first thatσ is bounded) andµk are real
values. We are going to reduce this integral to an integral along the intervalσ .

Equation (61) is a solution of the integral equation for the real values ofs. However, we
have to use it for the pure imaginarys also. In order to obtain this corresponding relation,
we must rotate the contour of integration (taking into account the sign ofs) and make it
parallel to the real axis,L→ L1. Then, we can deform the contour of integration intoL2

(see figure 3).

Figure 3.

Let us discuss the equation with respect tor

r = G0+ P
∫
σ

p(µ) dµ

r − µ +
N∑
k=1

c2
k

r − µk . (62)

This equation has some roots. If they are situated outsideσ , then their contribution can
be taken into account using the usual theory of residues. We are interested in the more
complex situation, when these roots lie insideσ . Let ζm,m = 1, 2, . . . ,M, be such roots.
We assume for brevity, that they are simple roots of (62). Then the following limits exist

Bm = lim
r→ζm

{
(r − ζm)

[
r −G0− P

∫
dµ|κ(µ)T (µ)|2

r − µ −
N∑
k=1

|ck|2
r − µk

]−1}
. (63)

Then

G(s) =
M∑
m=1

exp(sζm)Bm +
∫
σ

dr exp(sr)

{[
r −G0− P

∫
σ

p(µ) dµ

r − µ

−
N∑
k=1

c2
k

r − µk

]2

+ π2p2(r)

}−1

. (64)
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At first we prove relation (64) in the case whenM = 1, ζ1 ∈ σ . Let Vε = [ζ1 − ε, ζ1 + ε]
andσε = σ\Vε, ε > 0. Let us consider an equation

r = G0+ P
∫
σε

p(µ) dµ

r − µ +
N∑
k=1

c2
k

r − µk − 2εp′(ζ1). (65)

The last term here is the linear term with respect toε of expansion of the integral∫
Vε

p(µ) dµ

ζ1− µ .

It follows from our construction, that equation (65) has a rootζ1(ε) = Reζ1(ε), with
|ζ1(ε)− ζ1| = O(ε2), whenε→ 0. Thusζ1(ε) ∈ Vε. Let us discuss an integral

Gε(s) = (2π i)−1
∫
L2

dr exp(rs)

[
r −G0−

∫
σε

p(µ) dµ

r − µ −
N∑
k=1

c2
k

r − µk + 2εp′(ζ1)

]−1

. (66)

BecauseL2 is separated fromσε, we get

Gε(s)→ G(s) when ε→ 0. (67)

Let us now calculateGε(s) by deforming the contour. The integrand inGε(s) has the
cut on σε and the poleζ1(ε). Using (63) we can introduce the valueB1(ε). In addition
B1(ε) → B1 when ε → 0. Representing the contourL2 in (66) as a sum of contours
enclosing cuts and pole separately (see figure 4) and evaluating the corresponding integrals
in the usual way, we obtain

Gε(s) = exp[sζ1(ε)]B1(ε)+ π
∫
σε

dr p2(r) exp(sr)

{[
r −G0− P

∫
σε

p(µ) dµ

r − µ

−
N∑
k=1

c2
k

r − µk + 2εp′(ζ1)

]2

+ π2p2(r)

}−1

.

In each term of the last expression we can pass to the limit forε→ 0. Using equation (67)
we find the final result

G(s) = exp[sζ1)]B1+ π
∫
σ

dr p2(r) exp(sr)

{[
r −G0− P

∫
σ

p(µ) dµ

r − µ

−
N∑
k=1

c2
k

r − µk

]2

+ π2p2(r)

}−1

. (68)

The derivation for the caseM > 1 is analogous.

Figure 4.

We have obtained the last relation assuming thatp(µ) has bounded support. However,
if this function is fast decreasing when|µ| → ∞, then the denominator of the integrand on
the right-hand side of (68) is decreasing liker−2 when|r| → ∞. Sinces is pure imaginary,
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the integral in (68) is absolutely convergent. These considerations allow us the possibility to
extend the validity of (68) and to use it for functions with infinite support,σ fast decreasing
at infinity.
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